Quantum Gravity from Integration over Dirac ensembles

by John W. Barrett

Outline

I Spectral triples - Commutative - Non-commutative Quantum models Random Dirác ensembles - Finite spectral triples - dim 3 results

I: Commutative spectral triples

$(\mathcal{A}, \mathcal{H}, D)$

•

- *A*: commutative *-algebra
- \mathcal{H} : Hilbert space with action of \mathcal{A} and commuting action of $\gamma, \gamma^2 = 1$

D:
$$\mathcal{H} \to \mathcal{H}$$

 $D\gamma = -\gamma D$ (s even)
 $+\gamma D$ (s odd)
 $[[D, a], b] = 0$ for all $a, b \in \mathcal{A}$

Manifolds

$$(M, g_{\mu\nu}) \leftrightarrow (\mathcal{A}, \mathcal{H}, D)$$

•
$$\mathcal{A} = C^{\infty}(M, \mathbb{C})$$

• $(*f)(x) = \overline{f}(x)$

• $\mathcal{H} = L^2(S, dV)$, *S:* bundle of spinors on *M* • u - chirality of C

•
$$\gamma = \text{chirality of S}$$

• $D = e_a^{\mu}(x)\gamma^a \nabla_{\mu}, \qquad e^2 = g$

Connes reconstruction: given dimension d, conditions on $(\mathcal{A}, \mathcal{H}, D)$ such that it is a *d*-manifold.

NC spectral triple

$(\mathcal{A}, \mathcal{H}, D)$

- *A*: *-algebra
- \mathcal{H} : Hilbert space, bimodule over \mathcal{A} and commuting action of $\gamma, \gamma^2 = 1$

• D:
$$\mathcal{H} \to \mathcal{H}$$

 $D\gamma = -\gamma D \text{ (s even)}$
 $+\gamma D \text{ (s odd)}$
 $[[D, a \rhd], \lhd b] = 0 \text{ for all } a, b \in \mathcal{A}$

Real structure

 $J: \mathcal{H} \to \mathcal{H}$, antilinear

•
$$J^2 = \pm 1$$

• $JD = \pm'DJ$
• $J\gamma = \pm''\gamma J$

Signs $\leftrightarrow s \in \mathbb{Z}/8$

Commutative case $Ja^*J^{-1} = a$ *M*: spin manifold

Non-commutative case $\lhd a = J(a^* \rhd)J^{-1}$

SM internal space

q

 $\overline{\lambda}$

q

 $\overline{\lambda}$

 λ

 λ

 λ

 λ

 λ

 m^T

 m^T

 m^T

 q^T

 $\overline{\lambda}$

 q^T

 $\overline{\lambda}$

 λ

λ

 λ

1

-1

1

-1

-1

-1

1

-1

1

1

-1

1

 l_L

 e_R

 q_l

 d_R

 u_R

 \overline{l}_L

 \overline{e}_R

$(\mathcal{A}_F, \mathcal{H}_F, D_F)$ finite real spectral triple, $s = 6$							
• $\mathcal{A} = M_3(\mathbb{C}_{\mathbb{R}}) \bigoplus \mathbb{H} \bigoplus \mathbb{C}_{\mathbb{R}} = \{(m, q, \lambda)\}$							
• $\mathcal{H} = \mathbb{C}^{96} = \langle l_L, e_R, v_R, q_L, d_R, u_R, \overline{l}_L, \overline{e}_R, \overline{\nu}_R, \overline{q}_L, \overline{d}_R, \overline{u}_R \rangle$							
• $Jf = \overline{f}, \ J\overline{f} = f$ • $D_F = \begin{pmatrix} 0 & M & G & 0 \\ M^* & 0 & 0 & H \\ & & & - \end{pmatrix}$							
$\bullet D_F = \begin{bmatrix} M^* & 0 & 0 & H \\ & & & - \end{bmatrix}$							

$$egin{aligned} egin{aligned} egi$$

basis $(f_L, f_R, \overline{f}_L, \overline{f}_R)$

Vacuum of SM

 $(\mathcal{A}_M, \mathcal{H}_M, D_M) =$ spacetime

 $(\mathcal{A}, \mathcal{H}, D_0) = (\mathcal{A}_M \otimes \mathcal{A}_F, \mathcal{H}_M \otimes \mathcal{H}_F, D_M \otimes 1 + \gamma_M \otimes D_F)$

 D_0 is the vacuum of SM for the spacetime. Physical fermion fields are in \mathcal{H}_+ : $\gamma_M \otimes \gamma_F = 1$

All bosonic fields: $D = D_0 + \sum_i a_i [D_0, b_i], \quad a_i, b_i \in \mathcal{A}$

II: Quantum models

Partition function for QG+SM:

$$Z(f) = \int e^{-S(D) + i \langle J\Psi, D\Psi \rangle} f(D, \Psi) dD d\Psi$$

 $D \in G, \Psi \in \mathcal{H}_{+}$

Issues:

- What is *G*?
- Is D_F fixed?
- What is S?
- Are any axioms just e.o.m.?
- Functional integration?

III: Random Dirac models

Quantum models simplified:

- Assume fermions integrated already
- Fix $\mathcal H$, $\mathcal A$ finite dimensional and NC
- G = all D satisfying real spectral triple axioms
- $S(D) = \operatorname{tr} V(D)$, bounded below
- \int is ordinary integration on vector space $\mathcal G$

$$Z(f) = \int_{\mathcal{G}} e^{-S(D)} f(D) \, dD$$

Fuzzy spaces

 $M(n) = n \times n$ matrices

V = module for Cliff(p,q)

 $s=q-p \pmod{8}$

- $\mathcal{A} = M(n, \mathbb{C}), M(n, \mathbb{R}) \text{ or } M(n/2, \mathbb{H})$
- $\mathcal{H} = V \otimes M(n, \mathbb{C})$
- $\langle v \otimes m, v' \otimes m' \rangle = (v, v') \operatorname{Tr} m^* m'$
- $\rho(a)(v\otimes m) = v\otimes (am)$
- $\Gamma(v\otimes m) = \gamma v\otimes m$
- $J(v \otimes m) = Cv \otimes m^*$

- Type (0,0)
- Type (1,0)

 $D = \{H, \cdot\} + \gamma^1 \otimes \{H_1, \cdot\}$

D = 0

 $D = [H, \cdot] + \gamma^1 \otimes [L_1, \cdot]$

• Type (2,0)

• Type (0,1)

- Type (1,1)
- Type (0,2)

 $D = \gamma^1 \otimes \{H_1, \cdot\} + \gamma^2 \otimes \{H_2, \cdot\}$

$$D = \gamma^1 \otimes \{H, \cdot\} + \gamma^2 \otimes [L, \cdot]$$

$$D = \gamma^1 \otimes [L_1, \cdot] + \gamma^2 \otimes [L_2, \cdot]$$

Phase transition

 $S(D) = \operatorname{tr} V(D)$ $V(D) = D^4 + g_2 D^2$

$$S = \sum_{\lambda} \lambda^4 + g_2 \lambda^2$$

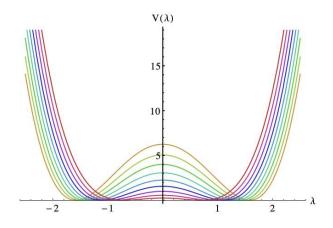
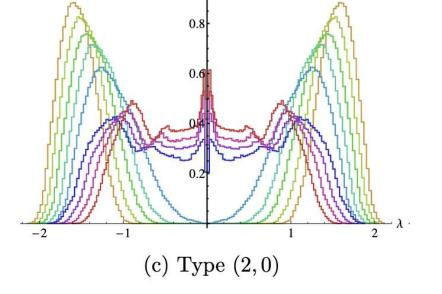


Figure 11: The potential $V = \lambda^4 + g_2 \lambda^2$ for $g_2 = -1, -1.5, -2, -2.5, -3, -3.5, -4, -4.5, -5$. The lines are coloured from red $(g_2 = -1)$ through to yellow $(g_2 = -5)$.



 $P(\lambda)$

Monte Carlo Eigenvalue distribution

JWB + L. Glaser 2016

3d models

Numerical simulation of random

Dirac operators

Type
$$(p,q) = (3,0)$$
:
 $D = 1 \otimes [m_0,\cdot] + \sum_{1}^{3} \sigma_i \otimes \{m_i,\cdot\}$

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy, March 2022.

Mauro D'Arcangelo 14302771

Supervised by

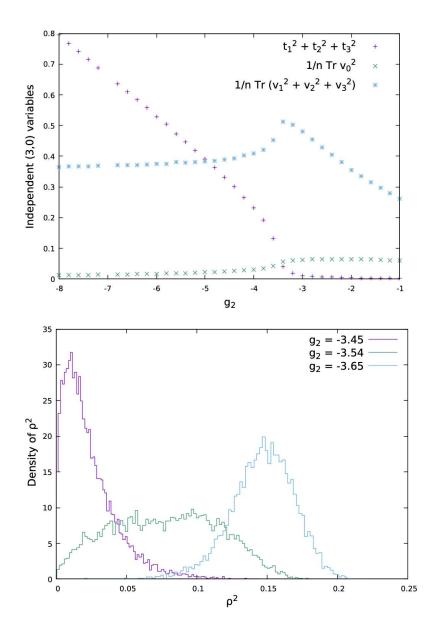
John W. Barrett Sven Gnutzmann

Type
$$(p,q) = (0,3)$$
:
 $D = 1 \otimes \{m_0,\cdot\} + \sum_{i=1}^{3} \sigma_i \otimes [m_i,\cdot]$

Decompose
$$m_{\mu} = t_{\mu}1 + v_{\mu}$$

with tr $v_{\mu} = 0$

Type (3,0)



$$D = 1 \otimes [m_0, \cdot] + \sum_{1}^{3} \sigma_i \otimes \{m_i, \cdot\}$$

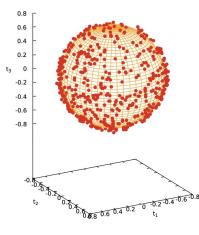
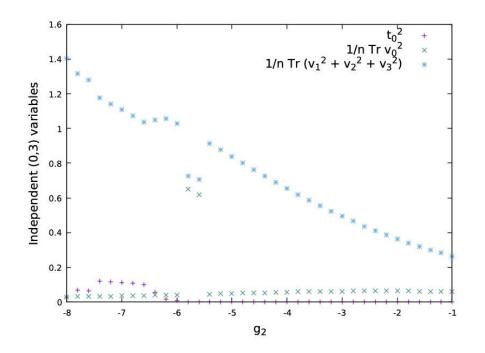


Figure 6.8: Monte Carlo history of t_1 , t_2 and t_3 in region II of the (3,0) model at $g_2 = -6$, n = 8. The solid orange sphere is a guide for the eyes.

2nd order transition to commutative phase

Type (0,3)



Fuzzy sphere $v_a = Rl_a$, a = 1,2,3

$$\begin{split} & [l_a, l_b] = \sum_c i \epsilon_{abc} l_c, \text{ irreducible} \\ & \frac{1}{n} \operatorname{Tr} v_c^2 = -\frac{g_2}{8} \frac{n^2 - 1}{2n^2 - 1} \approx -\frac{g_2}{16}, \quad c = 1, 2, 3 \end{split}$$

$$D = 1 \otimes \{m_0, \cdot\} + \sum_{1}^{3} \sigma_a \otimes [m_a, \cdot]$$

ſ	g_2	Chain 1	Chain 2	Chain 3	Chain 4	Fuzzy	$-g_2/16$
						sphere	
	-300	18.6946(3)	18.6946(2)	18.6945(2)	18.6946(2)	18.6951	18.75
	-150	9.3465(3)	9.3740(3)	9.3465(2)	9.3739(2)	9.3476	9.375
	-100	6.2301(2)	6.2301(3)	6.2301(2)	6.2301(3)	6.2317	6.25

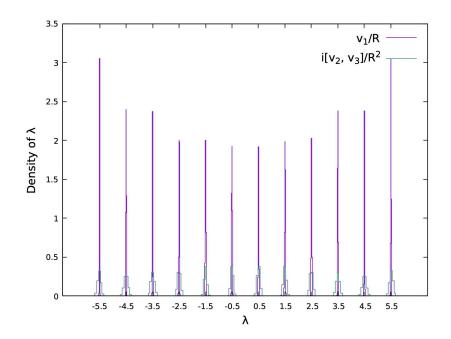


Figure 6.6: Model (0,3), eigenvalue density of v_1/R (purple) and $i[v_2, v_3]/R^2$ (green) for n = 12, $g_2 = -300$. The spectrum is compatible with an su(2) solution.

Conclusion

- Would like to model (Euclidean) quantum spacetime with a random Dirac model.
- This supposes spacetime has some NC structure. If it does, there is a good explanation of the Planck scale.
- Understanding the vacuum in such models is crucial to explaining the physical picture.

References

Real spectral triples

A. Connes. Noncommutative geometry and reality. 1995.

JWB, Introduction to Non-commutative Geometry. 2022 https://johnwbarrett.wordpress.com

Standard Model

JWB, A Lorentzian version of the non-commutative geometry of the standard model of particle physics. 2006

A. Connes. Noncommutative geometry and the standard model with neutrino mixing. 2006

Random spectral triples

JWB, L. Glaser, Monte Carlo simulations of random non-commutative geometries. 2016

M. D'Arcangelo, Numerical simulation of random Dirac operators. PhD thesis, University of Nottingham. 2022 <u>https://eprints.nottingham.ac.uk/etheses/</u>

H. Hessam, M. Khalkhali, N. Pagliaroli, and L. Verhoeven, From Noncommutative Geometry to Random Matrix Theory 2022